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Abstract

This paper introduces a preview control design method to reduce the settling time of Dual-Stage Actuators (DSA). A Dual-
Stage Actuator system is comprised of two actuators connected in series, a primary (coarse) actuator, and a secondary (fine)
actuator. The objective of the proposed design is to account for the redundancy of actuators and use the information of future
reference levels in order to compute a pair of inputs to be applied before the output transition time. Experimental results show
that the proposed design method significantly reduces the output transition time when compared to a conventional form of DSA
control design.
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Preview Control of Dual-Stage Actuator
Systems for Super Fast Transition Time

I. INTRODUCTION

Dual-stage actuators (DSA) are comprised of two actu-

ators connected in series, a primary (coarse) actuator, and

a secondary (fine) actuator. While the primary actuator is

characterized by a long travel range but slow dynamics, the

secondary actuator features a short range but fast dynamics.

Due to these complementary characteristics an improved per-

formance may be achieved because DSA control design uses

the strengths of one actuator to compensate for the weaknesses

of the other. One of the main challenges when designing

such controllers is how to take full advantage of the actuator

redundancy in order to achieve the desired performance. Here

we have developed a control design method that explores this

redundancy and reduces the settling time of DSA systems.

In order to achieve this goal, this paper introduces a preview

control design method for DSA systems.

Given the information of the immediate future reference

level refi+1, and of the output transition instant t0, the objective

is to design a control law that takes the system output

from an initial reference y(t ≤ t0) = refi to a final reference

y(t > t0 + tr) = refi+1 while reducing the transition time tr.
Due to the redundancy of actuators a significant reduction

of tr can be achieved by allowing a pre-actuation, i.e., by

allowing action before the output transition instant t = t0. This

strategy is specially relevant in applications likely to face the

successive set point control scenario such as dual-stage Hard-

Disk Drives (HDDs) [1], [2]. Other larger scale DSA systems

that can benefit from the proposed technique include wafers

alignment in microlithography [3], dual-stage machine tools

[4] and dual-stage XY positioning tables [5]. In fact, any

system that accounts with redundant actuators may benefit

from the preview control methodology.

Despite the structural simplicity of DSAs it is a challenge

to design controllers for such systems that yield an optimal

performance. Due to the redundancy of both actuators, any

desired trajectory may be generated by various pairs of inputs.

Conversely, systems that have no actuator redundancy have

been thoroughly studied and time optimal performance is

achieved by well-known time optimal control (TOC) tech-

niques, also known as bang-bang control [6]. Despite its

theoretical elegance, the classical TOC is not robust with

respect to system uncertainties and measurement noises and it

is well-known that imperfections in switching devices and time

delays can cause the controller to suffer from chattering [7].

While these implications result in the practical inviability of

such control strategy, an important adaptation of this technique

was proposed by Workman [8] under the name of proximate

time-optimal servomechanism (PTOS). The PTOS overcomes

these problems by using the maximal acceleration of the

actuator only when it is practical to do so. As the system

approaches the reference level the controller switches to a

linear control law, thus eliminating chattering and providing

feedback in order to accommodate plant uncertainties and

measurement noises.

A different approach toward tracking performance improve-

ment was presented later by Lin et al. [9], where a composite

nonlinear feedback (CNF) control law was developed. Such

controllers are divided into two parts, 1) a linear feedback

law, used to stabilize the system with a low damping ratio,

providing it with a fast rise time; and 2) a nonlinear feedback

law, designed such that the system becomes highly damped

as the output approaches the reference level, thus presenting

no overshoot. The CNF was further expanded to higher order

and multivariable linear systems in [10], and to measurement

feedback control in [11].

Only recently both the CNF and the PTOS control strategies

were integrated and adapted to DSA by Zheng et al. [12] and

[13]. This combined controller improves the overall perfor-

mance of the system while accommodating the saturation of

the secondary actuator. The PTOS control law is applied to the

primary actuator so that it yields a closed-loop system with

a small damping ratio for fast rise time and certain allowable

overshoot; the CNF control law is applied to the secondary

actuator in order to eliminate the overshoot generated by

the primary actuator. Conversely, conventional work on DSA

tracking control is based on designing a primary actuator

control loop to yield a small or no overshoot, and a secondary

actuator controller to follow the position error of the primary

actuator [14] and [15]. Needless to say, the association of

PTOS and CNF generates a significantly better performance.

However, both the conventional and the nonlinear strategies

do not take into consideration the possibility of pre-actuation.

The redundancy of actuators allows the system to maintain

a constant output when the actuators are still in movement.

This intrinsic characteristic of DSA systems can be explored in

order to reduce the output transition time tr from one reference

level to another. As will be exposed, a significant improvement

is achieved by allowing action before the transition time

interval while maintaining the output at a constant value.

The main contribution of this paper is the development

of a pre-actuation strategy based on the immediate future

reference level in order to reduce the settling time of the

system. A control method that utilizes future information was

first introduced in [16] under the name of “preview control”. It

will be shown that the proposed preview control methodology

is fully compatible with the nonlinear state-of-art DSA design

proposed in [12]. In particular, a continuous switching between

both controllers is achieved. Experimental results demonstrate

the effectiveness of the proposed design, which can achieve
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a significant improvement regarding the settling time when

compared to a conventional form of DSA control.

As opposed to the problem of reducing the settling time,

the minimum-energy output-transition problem was already

studied in the preview control framework in [17], where a pre-

actuation is allowed in order to reduce the input energy. This

technique, however, is not used to reduce the settling time and

does not consider the saturation of the second actuator, which

is a hard constraint in the design of optimal time transition for

DSA’s.

To present the proposed methodology, the paper is divided

into the following sections: Section II formulates the problem

and introduces the general idea, the proposed solution is given

in Section III, experimental results are presented in Section IV,

and Section V concludes the paper.

II. PROBLEM FORMULATION

The general class of DSA treated in this paper is depicted

in Fig. 1. The primary actuator is assumed to be a rigid body

of mass M, and the friction acting on this actuator (if any)

is actively compensated by a friction compensator so that the

actuator can be regarded as a frictionless linear motor. The

secondary actuator is treated as a body of mass m connected

to a spring of constant k with damping c. As seen in the

figure, the secondary actuator is connected in series with the

primary and has a range of actuation bounded by ±r (r > 0).
Typically, DSA’s have the features that M �m, y1/y2 � 1, and

|u2/u1|�m/M, thus, the coupling forces between the primary

and the secondary actuators may be neglected for simplicity. In

this way, the DSA of interest is modeled as a linear decoupled

dual-input single-output (DISO) system, which is represented

in a state-space form as [12]:

Σ1 : ẋ1 = A1x1 +B1u1, x1(0) = 0, |u1| ≤ ū1

Σ2 : ẋ2 = A2x2 +B2u2, x2(0) = 0, |u2| ≤ ū2

y = y1 + y2 = C1x1 +C2x2, (1)

where x1 = [y1 ẏ1]T is associated with the primary (coarse)

actuator and x2 = [y2 ẏ2]T with the secondary (fine) actuator,

and ūi is the control saturation level for ui. Furthermore,

A1 =
[

0 1

0 0

]
,B1 =

[
0

b1

]
,C1 =

[
1 0

]
,

A2 =
[

0 1

a1 a2

]
,B2 =

[
0

b2

]
,C2 =

[
1 0

]
,

with a1 = −k/m, a2 = −c/m, b1 = 1/M and b2 = 1/m.

An intrinsic characteristic of such class of systems is that

the coarse and fine actuators are complementary to each other:

while the primary actuator is slow and has a large travel

range, the secondary actuator is fast but has a limited range of

actuation. Due to these complementary characteristics of the

DSA it will be assumed that, within the travel range of the

secondary actuator, the tracking error of the primary actuator

is sufficiently smooth to be compensated by the secondary

with negligible error.

In other words, if we define a manifold Si,

Si = {y1 ∈ R : |y1 − refi| ≤ r}, (2)

where refi is the i-th reference level and ±r is the range of the

secondary actuator, then, whenever y1 is within the manifold

Si, the total output of the system y will be at the i-th reference

level with negligible error. Moreover, if the output y must

stay at an initial reference level ref1 for tS seconds before

moving to another given reference ref2, then y1 must stay in

S1 for tS seconds before moving to S2 (Fig. 2). An example

of this scenario occurs in HDD’s where the magnetic head

is frequently controlled to settle over a desired track, e.g.,

track number ref1, during tS1
seconds to perform read or write

operation on the entire track; and after that move to an adjacent

track ref2.

Hence, the DSA control problems may be formulated as

follows:

P1: For a given initial condition x1(0) = [ref1 0]T, two man-
ifolds S1 and S2 determined by (2), and a control saturation
level ū1, find a controller

|u1(t)| ≤ ū1, t ≥ 0 (3)

and a preview control time τ ≥ 0, such that, the output y1 of
the primary actuator is driven from S1 to S2 with a reduced
transition time tr, in the following sense:

y1(t) ∈ S1, 0 ≤ t ≤ τ. (4)

y1(t) ∈ S2, t ≥ τ + tr, and lim
t→∞

y1(t) = ref2. (5)

P2: For a control saturation level ū2, find a controller

|u2(t)| ≤ ū2, t ≥ 0 (6)

for the secondary actuator to compensate for the error gener-
ated by the primary actuator, i.e., to achieve y = y1 +y2 = refi
when y1 ∈ Si.

Remark 2.1: Notice that if we choose τ = 0, it falls in

the conventional control strategy for DSA where no preview

control is applied. Conversely, there must be an upper bound

in the preview control time inasmuch as tS − τ must be

long enough such that the primary actuator can be driven

sufficiently close to the reference before any pre-actuation is

applied.

u1
y1

y2u2

2r

y = y + y1 2

M

m

Fig. 1. Schematic representation of a dual-stage actuator (DSA).
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u1− u1−u1+u1+

trt   −S1 1τ t   −S2 2τ

1y

0
t

ref1

ref

S

2

1

S2

2τ

Fig. 2. After tS1
seconds in S1, y1 must move to S2 with reduced transition

time tr .

III. SOLUTION

In order to solve problem P1 the proposed control strategy

will be composed of two different control laws, i.e.,

u1(t) =
{

u1−(t), 0 ≤ t ≤ τ
u1+(t), t > τ . (7)

In particular, 1) a preview control law, denoted by u1−, will be

responsible for the pre-actuation of the system; 2) a nonlinear

feedback control law, denoted by u1+, will be applied in order

to achieve y1 → ref2, as t →∞. Practically, we can assume that

y1 approaches ref2 in a short time (not necessarily t → ∞), say

in τ1 + tr + tS2
−τ2 as denoted in Fig. 2. More specifically, the

primary actuator’s status becomes [ref2 0]T at this moment.

Taking this moment as the new reference time t = 0, the

proposed controller (7) may apply recursively in a successive

step tracking scenario. Problem P2 will be solved by a single

composite nonlinear control law that allows the secondary

actuator to compensate for the error generated by the primary

both during u1− and u1+. Next, we will study the solvability

of P1 and P2 respectively with the emphasis on the former.

A. Primary Actuator - Solvability of P1

In order to simplify the notation, let us define

p := y1, v := ẏ1,

so that x1 = [p v]T and the primary actuator equation becomes

ṗ = v, v̇ = u1/M. (8)

1) PTOS Controller u1+: In the literature, e.g., [15], a

well-known proximate time-optimal servomechanism (PTOS)

control is applied to the primary actuator. This is a near

time-optimal control strategy that can accommodate plant

uncertainty, measurement noise and actuator saturation. The

control law is given by:

u1+(t) = sat[σ(t) f (ref2 − p(t))− k2v(t)] (9)

where the non-negative continuous function f is defined as

f (x) =
{

k1|x|, for|x| ≤ ū1/k1

2
√

k1|x|ū1 − ū1, for|x| > ū1/k1
,

σ(t) = sgn(ref2 − p(t)), and sat(·) is with the saturation

level of ū1. The constants k1 and k2 are positive and they

can be designed by any linear control technique, e.g., pole-

placement method. The role of the PTOS controller (9) can

be summarized as follows for the need of this paper.

Lemma 3.1: For given parameters τ , pτ , vτ , ref2 and S2

determined by (2), the controller (9) with t ∈ [τ,∞) drives the

primary actuator from x1(τ) = [pτ vτ ]T into S2 in the sense

of (5). In particular, the transition time tr is called PTOS-

optimized w.r.t. (vτ , ref2 − pτ).

The main objective of this paper is to reduce the transition

time tr. Clearly, for a given system and a given PTOS

controller, tr depends on the initial velocity vτ and the initial

step level ref2 − pτ . Without loss of generality, we assume

ref2 > ref1. Roughly speaking, tr is reduced if vτ is larger

and ref2 − pτ is smaller. In a conventional control design,

the PTOS controller applies with vτ = 0 and pτ = ref1. In

other words, tr is PTOS-optimized w.r.t. (0, ref2 − ref1). In

this paper, a preview controller is introduced such that tr is

PTOS-optimized w.r.t. (vτ , ref2 − ref1 − r) for some vτ > 0.

2) Preview Controller u1−: The preview control strategy

is based on the knowledge that after tS seconds at ref1 the

total output y will move to ref2. As already mentioned in

Section II, two manifolds S1 and S2 are built around the

respective references, and the problem, in the primary actuator

perspective, becomes to move from S1 to S2 while satisfying

the constraints (3) and (4). In order to reduce the transition

time from one manifold to another, a pre-actuation will be

applied to the primary actuator such that at the transition

instant t = tS the output y1 is at the border of S1 moving

toward S2 (Fig 2). We assume the preview control time is

defined as τ , i.e., the pre-actuation starts τ seconds before

the transition instant. In this context, a trajectory must be

designed such that the primary actuator is moved from a

given initial condition x1(0) = [p0 0]T to a desired condition

x1(τ) = [pτ vτ ]T. Specifically, p0 = ref1 and pτ = ref1 ± r in

the present scenario. Among many possible trajectories, the

one with minimum control effort is selected.

Lemma 3.2: For any given τ > 0, p0, pτ , and vτ , the

minimum effort input that takes the primary actuator from

the initial condition x1(0) = [p0 0]T to the final condition

x1(τ) = [pτ vτ ]T, is given by:

u1−(t) = M(at +b), 0 ≤ t ≤ τ
a = 6(τvτ −2Δp)/τ3, b = −2(τvτ −3Δp)/τ2 (10)

where Δp := pτ − p0.
Proof: This proof follows from standard calculus of vari-

ations in optimal control theory [6]. Define the performance

index

J =
1

2

∫ τ

t0
u2

1−(t)dt, (11)

let L = u2
1−/2 and g = [v u1−/M]T, adjoin the system’s

equations (8) to (11) via the Lagrange multipliers λ T = [λ1 λ2],

J =
∫ τ

t0
L+λ T(g− ẋ1)dt.
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Let H be the Hamiltonian function defined as H = L+λ Tg,

and integrate λ Tẋ1 by parts to yield,

J = −λ Tx1|τ0 +
∫ τ

0
(H + λ̇ Tx1)dt.

The minimum of J is achieved when δJ = 0, therefore,

δJ = −
(i)=0︷ ︸︸ ︷

λ Tδx1|t=τ +λ Tδx1|t=0

+
∫ τ

0

⎛
⎜⎜⎜⎜⎝

(
∂H
∂x1

+ λ̇ T

)
︸ ︷︷ ︸

(ii)=0

δx1 +
∂H

∂u1−
δu1−︸ ︷︷ ︸

(iii)=0

⎞
⎟⎟⎟⎟⎠dt.

Notice that (i) = 0 because the initial and final conditions are

fixed. To achieve (ii) = 0, one must chose λ such that

λ̇ T = − ∂H
∂x1

= [0 −λ1], (12)

which implies that λ1 is constant and λ2(t) = −(at +b) with

a and b also constants. In order to achieve (iii) = 0, one must

find u1− such that

∂H
∂u1−

= λ2 −u1− = 0. (13)

This implies

u1−(t) = M(at +b)

v(t) =
at2

2
+bt + v0

p(t) =
at3

6
+

bt2

2
+ v0t + p0

The constants a and b are readily found by noticing that v(τ) =
vτ and p(τ) = pτ . This completes the proof.

�
The controller (10) generates a smooth trajectory for the

primary actuator while taking it from the initial condition

x1(0) = [p0 0]T to the final condition x1(τ) = [pτ vτ ]T. This

controller, however, does not always satisfy the constraints

(3) - (5). Moreover, at the instants t = 0 and t = tS there

will be switchings from the PTOS controller (u1+) to preview

controller (u1−) and vice verse, which may cause discontinuity

in the overall controller (7). Theorem 3.1 shows that with a

proper choice of the preview time τ and the final velocity

vτ , the controller (10) not only satisfies the constraints but

also provides a continuous switching between the preview

controller and the PTOS controller.

Theorem 3.1: For any given r > 0, refi and Si determined by

(2), i = 1,2, let δ := ref2 − ref1, σ = sgn(δ ), and ξ = δ −σr,

and assume |δ | ≥ 2r. Consider a primary actuator with the

initial condition x1(0) = [ref1,0].
(i) For any τ and vτ satisfying τ > 0 and σvτ > 0, the

controller (7) composed of (9) and (10) with p0 = ref1

and pτ = ref1 + σr drives the primary actuator from S1

to S2 in the sense of (5). Moreover, the transition time tr
is PTOS-optimized w.r.t. (vτ ,ξ ).

(ii) In (i), if τ and vτ satisfy

τvτ = 3σr, vτ = σ
√

ρsat(v̄2
τ/ρ) (14)

where

v̄τ =
√

(ρk2/2)2 +ρ f (ξ )−ρk2/2, ρ := 3r/(2M),

the controller (7) is continuous over [0,∞) and the con-

strains (3) and (4) are satisfied. Thus, the problem P1 is

solved.

Proof: (i) During the time interval [0,τ), Lemma 3.2 shows

that the primary actuator is driven by the controller (10) from

x1(0) = [p0 0]T to x1(τ) = [pτ vτ ]T. During [τ,∞), the initial

velocity for the PTOS controller (9) is vτ and the initial step

level is ξ . Obviously, the transition time tr is PTOS-optimized

w.r.t. (vτ ,ξ ) by Lemma 3.1.

(ii) Because the first equation of (14) implies b = 0 in (10)

by noting pτ − p0 = σr, the controller (10) becomes u1−(t) =
Mat and hence u1−(0) = 0.

At the time τ , we have

u1−(τ) = Maτ = σv2
τ/ρ (15)

u1+(τ) = sat(σ f (ξ )− k2vτ). (16)

To show u1+(τ) = u1−(τ), we consider two cases.

(a) If |ξ | and hence f (ξ ) is large such that v̄2
τ ≥ ρ ū1. From

the second equation of (14), we have vτ = σ
√

ρ ū1. As a result,

on one hand, (15) gives

u1−(τ) = σ ū1;

on the other hand, (16) gives

u1+(τ) = σsat( f (ξ )− k2

√
ρ ū1).

It suffices to show

f (ξ )− k2

√
ρ ū1 ≥ ū1 (17)

to prove u1+(τ) = u1−(τ). Indeed, v̄τ ≥√
ρ ū1 gives√

(ρk2/2)2 +ρ f (ξ ) ≥ ρk2/2+
√

ρ ū1

and hence (17).

(b) If |ξ | and hence f (ξ ) is small such that v̄2
τ < ρ ū1. From

the second equation of (14), we have vτ = σ v̄τ . Then, (15)

gives

u1−(τ) = σ v̄2
τ/ρ,

and (16) gives

u1+(τ) = σsat( f (ξ )− k2v̄τ).

It suffices to show

f (ξ )− k2v̄τ = v̄2
τ/ρ < ū1

to prove u1+(τ) = u1−(τ). Indeed, the equation holds from

the definition of v̄τ and the inequality from the assumption

directly.

From above, we have proven u1−(0) = 0 and u1+(τ) =
u1−(τ), i.e., the controller (7) is continuous over [0,∞).

Next, notice that the control law (10) is monotonic (b = 0)

and v(0)= 0, then y1 moves from y1(0)= ref1 to y1(τ)= ref1 +
σr monotonically. Therefore, the constraint (4) is satisfied.
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Finally, by noting v2
τ ≤ ρ ū1 from the second equation of

(14), we have

|u1−(t)| = |Mat| ≤ |Maτ| = v2
τ/ρ ≤ ū1

which proves the constraint (3). The proof is thus complete.

�
In Theorem 3.1, we assume |δ | ≥ 2r (or, |ξ | ≥ r) which

means that the two manifold S1 and S2 do not overlap. When

|δ | < 2r (or, |ξ | < r), the controller in Theorem 3.1 may not

work directly because a small |ξ | gives a small f (ξ ) and hence

a small v̄τ which implies a large τ . In particular, when |δ |= r,

we have ξ = 0 and τ = ∞. However, τ should be small enough

such that tS − τ is sufficient for the previous PTOS to settle

down. Nevertheless, the controller in Theorem 3.1 still works

with a slight modification by resetting a smaller r = |δ |/2.

With this modification, we will show that there is an upper

boundary for τ , which is independent of r, ref1, and ref2. The

result is given below.

Corollary 3.1: For a given r̄ and any r ∈ (0, r̄], the preview

control time τ set in Theorem 3.1-(ii) has an upper boundary,

i.e., τ ≤ τ̄ , where τ̄ is independent of r, ref1, and ref2. In

particular,

τ̄ = 3/min{
√

ρ̄ ū1/r̄,
√

(ρ̄k2/2)2 + ρ̄ k̄1 − ρ̄k2/2}
ρ̄ = 3/(2M), k̄1 = min{k1, ū1/r̄}.

Proof: In Theorem 3.1, we assume |δ | ≥ 2r which implies

|ξ | ≥ r. From the definitions of f and k̄1, we have

f (ξ )/r ≥ f (r)/r ≥ k̄1. (18)

Since the equations (14) give τ = 3/
√

(ρ̄/r)sat(v̄2
τ/(ρ̄r)), it

suffices to prove √
(ρ̄/r)sat(v̄2

τ/(ρ̄r)) ≥

min{
√

ρ̄ ū1/r̄,
√

(ρ̄k2/2)2 + ρ̄ k̄1 − ρ̄k2/2}. (19)

If v̄2
τ/(ρ̄r) ≥ ū1, the inequality (19) holds obviously. Other-

wise, we have

lhs = v̄τ/r =
√

(ρ̄k2/2)2 + ρ̄ f (ξ )/r− ρ̄k2/2 ≥ rhs

using (18). The proof is thus complete. �

B. Secondary Actuator - Solvability of P2

The secondary actuator controller is a form of Composite

Nonlinear Feedback (CNF) borrowed from [12]. Its control

law is given by:

u2 = u2L +u2N (20)

where u2L is a linear feedback law which stabilizes the secon-

dary actuator with a higher bandwidth than that of the primary,

and u2N is a nonlinear feedback law which improves the

performance of the overall DSA system. The linear controller

is given by standard state feedback gain,

u2L = Wx2, (21)

where W = [w1 w2] may be calculated by any linear control

technique. The nonlinear feedback controller is given by:

u2N = γ(ref2,y)H
[

p− ref2

v

]
(22)

where H is chosen as:

H =
1

b2

[
(a1 +b2w1 +b1k1) (a2 +b2w2 +b1k2)

]
, (23)

with constants k1 and k2 from (9), and the nonlinear function

γ(·) is:

γ(ref2,y) = e−β |ref2−y|, (24)

where β is a tuning parameter.

Due to the proper choice of H and γ(ref2,y), the DSA

closed-loop dynamics change from the primary to the secon-

dary actuator control loop as the system approaches the refer-

ence level. This transition results in an improved performance

inasmuch as the secondary actuator is designed to have a

high bandwidth and a small damping ratio, allowing it to

compensate the overshoot generated by the primary actuator

[12]. Therefore, for the DSA system in (1) with the primary

actuator under the control law (7), the secondary actuator

under the nonlinear control law (20) is able to compensate for

the error generated by the primary actuator under constraint

(6), i.e., problem P2 is solved.

IV. EXPERIMENTAL RESULTS

The advantages obtained with the proposed control scheme

are demonstrated with the experimental setup shown in Fig. 3.

The system is comprised of a linear motor (LM) as the primary

stage and a piezo actuator (PZT) as the secondary stage. The

LM has a 0.5 m travel range and a 1μm resolution glass scale

encoder. The PZT has a maximum travel range of ±15 μm and

an integrated capacitive position sensor with 0.2 nm resolution

to measure the relative displacement between the LM and the

PZT. The resonance of the PZT is actively damped by its

integrated control electronics.

In order to compensate for the friction present in the LM, a

model-based friction compensator was employed [18]. Thus,

the primary actuator is modeled as a double integrator and the

DSA is fully described by the set of equations in (1). For this

Primary Stage

Linear Motor (LM)

Secondary Stage

Piezo Actuator (PZT)

Fig. 3. Linear dual-stage actuator (DSA) [12].
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particular system u1 = 1 V and u2 = 5 V, and the parameters

a1, a2, b1 and b2 were identified experimentally and are given

by
a1 = −106,
a2 = −1810,

b1 = 1.5×107,
b2 = 3×106.

(25)

When working in its linear region, the PTOS control law

becomes a linear feedback gain K = [k1 k2] which may be

parameterized as,

K =
1

b1
[(2πω1)2 4πω1ζ1] (26)

with ω1 and ζ1 the natural frequency and damping ratio of the

primary actuator closed-loop system. By pushing ω1 = 30 Hz,

the PTOS linear region is given by |ref2 − p(t)| ≤ 422 μm.

Similarly, the PZT gain is calculated by choosing ω2 = 300 Hz.

The gains are given by,

K = 10−3 × [2.4 0.0225],
W = −[0.8385 0.0005],
H = −[1.1602 0.001].

(27)

In the nonlinear function (24) the free parameter is chosen as

β = 0.001.

In order to add robustness to the preview control strategy,

the feedback/feedforward scheme in Fig. 4 was implemented.

The preview control input u1− is applied to an internal refer-

ence model, from which the desired trajectory x̂1 is obtained.

Then, this trajectory is tracked by applying the designed

preview input as a feedforward reference and by stabilizing

the system with a linear feedback gain Q = [q1 q2], which

may be computed by a standard linear control technique.

Plant

Model Q

u y1−

x1

+
+

x1

+
−

1

Fig. 4. The preview control strategy is implemented through a feedfor-
ward/feedback scheme in order to add robustness to the controller.

A. Results

Three forms of DSA control strategy were compared in the

experimental setup: (a) a conventional form of DSA control,

where the primary actuator is tuned to have no overshoot

[19]; (b) the nonlinear feedback control without pre-actuation,

where the primary actuator is allowed to present some over-

shoot for improved performance [12]; and (c) the proposed

preview control strategy. In order to implement controllers (a)

and (b), different values of ζ1 in (26) were chosen accordingly.

All controllers were implemented by a DSP system (dSPACE-

DS1103) with the sampling frequency of 5 kHz, and settling

time was defined as the time it takes for the total position

output y to enter and remain within ±2 μm relative to the

setpoint.

Figures 5-8 show the system response for different step

sizes. The top plot (a) shows the conventional control, the
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re�erence
tota� out�ut
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Fig. 5. Dual-stage tracking control for a 15 μm step reference. The proposed
control design (c) has a settling time of 2.2 ms and a preview control time of
15.2 ms.

middle plot (b) shows the nonlinear feedback without pre-

actuation, and the bottom plot (c) shows the proposed preview

controller. The thick line is the total output of the system (y),

the dashed line is the primary actuator output (y1), and the

dash-dotted line is the secondary actuator output (y2). Fig. 5

shows the system response to a 15 μm step reference, which

is within the range of the secondary actuator. Notice that

this response is dominated by the dynamics of the secondary

and there is little difference between the performance of the

comparative controllers. Also, in long range distances the

dynamics are dominated by that of the primary actuator and

the controllers present similar performance. Nevertheless, as

shown in Fig. 5, the proposed method is still able to achieve

some improvement over controllers (a) and (b) when seeking

the 15 μm reference.

A more significant improvement can be seen in the next

plots where the references consist of 30 μm, 50 μm and

100 μm steps. In these cases the dynamics of the primary

actuator play a crucial role in the overall response of the

system. Notice that when the secondary actuator saturates,

the system takes a considerably longer time to settle at the

reference. This is due to the fact that during the saturation

of the secondary actuator the system can only respond as

fast as the primary actuator does. Analyzing these plots one

can clearly see the contribution of the proposed design by

noticing that the secondary actuator does not saturate in any
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Fig. 6. Dual-stage tracking control for a 30 μm step reference. The proposed
control design (c) has a settling time of 3.8 ms and a preview control time of
20.0 ms.

of these responses. This fact results in a significant reduction

of the settling time because the system is not dominated by

the dynamics of the primary actuator. A comparison between

the three controllers is summarized in Table I.

Fig. 8 depicts the successive set-point scenario, where the

system follows a staircase reference of 100 μm, 200 μm and

300 μm. It was assumed that the total output y should stay

at each reference for tS = 200 ms. As in the preview plots,

the conventional controller is represented by (a), the nonlinear

feedback without pre-actuation is represented by (b) and the

proposed control law is depicted by (c).

These plots along with Table I demonstrate the effectiveness

of the proposed design. With the knowledge of the time to be

spent in each reference (tS) and the information of immediate

future reference levels (ref2), a significant improvement on the

reduction of the transition time is achieved by the proposed

preview control strategy.

V. CONCLUSION

A form of preview control for DSA systems was presented

in this paper. Based on the information of future reference

levels, a control strategy was developed so that inputs were

applied before the output transition time interval. This control

strategy was carefully designed to take full advantage of

the redundancy of actuators and enable them to move while

maintaining the total output constant. Experimental results
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Fig. 7. Dual-stage tracking control for a 50 μm step reference. The proposed
control design (c) has a settling time of 4.4 ms and a preview control time of
7.8 ms.

showed the effectiveness of the proposed approach which is

able to significantly reduce the settling time of the overall DSA

system.

TABLE I
COMPARISON OF THE SETTLING TIME IMPROVEMENT

Travel Improvement achieved by the proposed

Distance preview control strategy (%)

(μm) Single Stage Controller (a) Controller (b)

15 93 39 31

30 83 75 70

50 76 70 64

100 81 70 64
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